Sym-Bobenko formula for minimal surfaces in Heisenberg space

نویسنده

  • Sébastien Cartier
چکیده

We give an immersion formula, the Sym-Bobenko formula, for minimal surfaces in the 3-dimensional Heisenberg space. Such a formula can be used to give a generalized Weierstrass type representation and construct explicit examples of minimal surfaces. Mathematics Subject Classification: Primary 53A10, Secondary 53C42.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saddle towers in Heisenberg space

We construct most symmetric Saddle towers in Heisenberg space i.e. periodic minimal surfaces that can be seen as the desingularization of vertical planes intersecting equiangularly. The key point is the construction of a suitable barrier to ensure the convergence of a family of bounded minimal disks. Such a barrier is actually a periodic deformation of a minimal plane with prescribed asymptotic...

متن کامل

Translation invariant surfaces in the 3-dimensional Heisenberg‎ ‎group

‎In this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional Heisenberg group $rm Nil_3$‎. ‎In particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm Nil_3$‎ ‎whose position vector $x$ satisfies the equation $Delta x = Ax$‎, ‎where $Delta$ is the Laplacian operator of the surface and $A$‎ ‎is a $3 times 3$-real matrix‎.

متن کامل

A geometric interpretation of the spectral parameter for surfaces of constant mean curvature

Considering the kinematics of the moving frame associated with a constant mean curvature surface immersed in S we derive a linear problem with the spectral parameter corresponding to elliptic sinh-Gordon equation. The spectral parameter is related to the radius R of the sphere S. The application of the Sym formula to this linear problem yields constant mean curvature surfaces in E. Independentl...

متن کامل

A pr 2 00 6 Minimal surfaces in contact Sub - Riemannian manifolds

In the present paper we consider generic Sub-Riemannian structures on the co-rank 1 non-holonomic vector distributions and introduce the associated canonical volume and ”horizontal” area forms. As in the classical case, the Sub-Riemannian minimal surfaces can be defined as the critical points of the ’‘horizontal” area functional. We derive an intrinsic equation for minimal surfaces associated t...

متن کامل

Minimal Surfaces Associated with Nonpolynomial Contact Symmetry Flows

Two infinite sequences of minimal surfaces in space are constructed using symmetry analysis. In particular, explicit formulas are obtained for the selfintersecting minimal surface that fills the trefoil knot. Introduction. In this paper we consider the minimal surface equation EminΣ = { (1 + u2y) uxx − 2uxuyuxy + (1 + u 2 x) uyy = 0 } (1) whose solutions describe two-dimensional minimal surface...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013